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THE LARGE COEFFICIENT PROBLEM; CAN WE MAKE SENSE OUT OF QCD

PERTURBATION THEORY? ‘

Gcdfrcy B. west

Thcomtical Division, T-8

in Alarnos National IAoratory

MS B285

b hmos, NM 87545

I INTRODUCTION

llerc is the possibility of an impending crisis looming on the horizon for QCD. The prob-

lem is that in ma~y processes, large cocficients arise in the perturbation series expansion

leading to serious uncenainties concerning its pAictive power. Until recently most of the

examples of such a phenomenon occum-d in the calculation of decay rates. These were,

by and large, either ignore-dor dismissed using possible scheme-dcpcndcnce arguments as a

way out. However, more mxntiy a calculation of the 3-loop contribution to the total e+e-

annihilation cross-section was performed which gave an enamous coefficient of the order

of 50 times that of ‘he 2-loop tenn( ’). If comect, this would imply that the 3-lcmp contribu-

tion actually exceeds that of he 2-loop! TIuM,horn ● conservative vlewpolnt, the validity

of the Perturbation swrieaiexpanaion aa ●n eatinmte for the total e+e- craw+ xtion is

cnlled into qwatiow Such a cautionary attitude shouid even lx extended to the iowesr or-

der parton-modei result, ~ Q:; (Q, being the charge of the ith quark species). Since this

pnxess has piaycci a key rbic in the development and understanding of QCD and since, in

many ways, il is one of the cleencst methods for extracting ~, (the conventional QCD fiI-w

structure constant) tie probiem can no longer be ●voided. Fun.herrnorc, there is no reason to

doubt (and, in fact, goal reasons to believe) that this probiem shouid occur in ali physical

processes. Coming to grips with it is, of course, MNoniy impottant for testing QCD but also

for extracting fundamental quantities wch as u,. C!eariy one needs to understand the nature

and origin of such iarge cafficicnts bcfom one can conficknt!y continue to usc pcrturbative

estimates. Such probiems can be expected to occur univcrwdiy so, using different methods

10determine u,, for example, wili not circumvent the difficulty.

The purpost of [his talk is to focus on these probiems. I shali first review the experimental

situa[ion wi[h some exampies iiiustming the problem. I shaii then discuss vfi,ous grnerai

‘Tblk givenat tft RndimivcCmtkm Wwk~ MM u UK Univc.rsi[yO( Sussex,Brighmn,England,
July 1989



components and properties of perturbation theory (“uch as renormalization and causality) 2

‘beforeattempting to give a possible resolution of the problem.
Everyone is, of course, familiar with perturbation theory as a calculationa.1tool; Feynman

diagrams and their accompanying rules of computation are the stock-in-trade for all particle
physicists, theorists and expm-imentalists alike, Indeed, the phenomenal success of quantum

electrodynamics is surely one of the crowning achievements of modem physics. Its predic-
tions are in remarkable agreement with experiment, in some cases to one part in 10’2. Cal-

culationally, this success is rooted in pctturbation theory which has become the cornerstone
for understanding t-heconsequences of any relativistic quantum fieid theory. In spite of this,

perturbation theory has serious limitations beyond those associated, for example, with such

questions as bound states, or spontaneous symmetry breaking. Already in 1952 Dyson(z)

had pointed out in an elegant paper that the perturbation ssries could not be convergent. The

argument is deceptively simple and very physical: imagine changing CMto –~ so that like

charges now attract and opposite ones repel. Clearly ths ground state of this new theory is

quite different from that of ordinary QED since virtual pairs created in the vacuum now repel

one another. Thus, perturbing around the original “rnvial” vacuum Gf QED will c!early be

insufficient to describe this new situation; the structure of the new theory and, in particu-

lar, of its vacuum cannot, therefore, be obtained by simply scning cm= –CUin the Feynma.n

pwturbatiort series. Consequently perturbation theory must be non-analytic in a at a = O

signifying that the series has zero tadius of convergence. An amusing historical note to this
is that Dyson came to this conclusion(’) after having first claimed that the series was in fact

convergent and that QED was therefore a closed book!

If the nature of the divergence of the series wetv such that it were asymptotic then the

situation is, at least in principle, controllable. Far, in such a case, as will be reviewed Ixlow, a

good estimate for the sum of the series is obtained by keeping “only” the first n/~( w 400 in

QED) terms. In practice, this means that, since a is so small, perturbation theory will, in fact,

give an accurate estimate; only at absurdly high order do serious deviations begin to develop,

Thus the fact that the series is actually divergent would be of no practical importance. Clearly,

then, the nature of the divergence (i,c whether, for example, it is asymptotic or not) is a

potentially deep and importart question. It presumably bears upon the question of the self-

ctmsistency of QED and whether it needs to be imbcdded in a Iargcr, possibly asymptotically

free theory.

The second limitation is a practical one and was best expressed by Feynman\4) himsc!r

in 1959; he was conccmed about developing an approximate algorithm for estimating higher

order terms in The pmurbation series without having to laboriously (~nd, to some extent,

mindlessly) calculate Feynman diagrams. Of course, his concern is somewhat less of a plob-

[cm these days given the advent of fast computers and sophisticated softwa.rt, nevertheless,

his remarks are worth rc~rtting. To quote:

“It seems thu[ very little physical intuition has yet been dcvelo~d in this subject,



l-nnearly eve~ case we am reduced to computing exactly the coefficient of some

specific term. We have no way to get a general idea of thr result to be expected.

To make my view clearer, consider, for example, the anomalous electron mo-

ment, [ *(g – 2) = a/2 m – O .328 a2 /n2 ]. We ha~e no physical picture by

which we can easily see that the comection is roughly cM/2fi, in fact, we do not

even know why the sign is positive (other than by computing it). In another field
we would not be content with the calculation of the second-otier term to three

significant figures without enough understanding to get a rational estimate of the

order of magnitude of the third. We have lxxn computing terms like a blind man

exploring a new room, but soon We must develop some concept of this rcmm as
a whole, md to have some general idea of what is contained in it. As a specific

challenge, is there any method of computing the anomalous moment of the elec-

tron which, on first rough approximation, gives a fair approximation of the a
term and a crude one to u2; and when improved, increases the accuracy of the

a2 term, yielding a rough estimate to a’ and beyond?”

Alrhough we shall not be able to meet Feynman’s cnallenge directly, nevcflheless the

techniques discussed here do constitute the beginning of an answer.

Returning to the question at hand, namely QCD mther than QED, we should note that

the difficulties there arc exacerbated for at least two independent reasons: (i) since cm,> oi,

the problem of the divergence of the series is much more serious and (ii) there arc explicit

non-perturbative phenomena (instantons and the like) associated with new local minima of

the action. The question of the interplay between other minima of the action beyond the

trivial one and ordinary perturbation theo~’ is a subtle one which we shall discuss below.

Regardless, it is clear that the QCD situation is a serious one in that large coefficients can

(and do) occur early in the expansion. In some cases, as reviewed immediately ‘below,they

occur ridiculously early. Ultimately a methodology based on understanding the nature of the

Scrie$must be devised for handling them.

II REVIEW OF SOME EXAMPLES

Before discussing some explicit QCD examples, let us examine QED and use it to briefly

discuss the question of scheme dependence. One of the best known QED series is that fur

(g-2) of the eiectron which was auoted above by Feynman; it rends

;9, = I + 05(c Y/7r) – t328(rY/n)2 + 1 183(u/7r)’+ . . (1)

3

whici, certainly looks like a well-behaved series. Recall that in deriving this equation a
cermin rcnormulizution scheme has been implicitly used; for example, a could be defined



through threshold Thompson scattering fmm (on-shell) electrons. It is via such a definition
that we deduce from experiment that cx x ( 137.03 . .) ’1. This is a natum.1definition es-

pecially for low-energy quantities such as g,. One could, in principle, use other schemes

associated with high energy QED phenomena where the corresponding CMwould be smaller.

Generally speaking, different schemes are related by some polynomial relationship(s): cd =
(l+olcm*+a2a3 +... (the a, being constants). Although, the final result for a physical

quantity such as g. does not depend on which scheme is chosen it is clearly not very sensible

to choose one associated with a high energy prwess when dealing with low energy phenom-

ena. In any case, in QED, since electrons are observable, there are “natural” schemes such as

via Thompson scattering, which are the most appropriate ones for the definition of a. This

is in contradistinction to QCD where Ihere are no analogous “natural” schemes associated

with experiments where quarks or gluons are real obscmables. Because ot asymptotic free-

dom, however, these can be approximated in a variety of high energy experiments such as
the total e+e- total cross-section measurement. b any case, as already stated, the final result

represented, for example, by the sum of the perturbation series must be scheme invariant. On

the other hand, to a finite order in perturbation theory, the result will, in general, be scheme-

dependent and this is a major source of ambiguity (and confusion). There have been many

attempts to define a “best” scheme appropriate to a particular process, however, none are to

tally satisfactory and all necessarily Ieaw a residue of uncertainty. I shall not, in this talk, be

much concerned with such problems especially since for any physical process, scheme in-

variant quantities can be deflned(s ITeven in finite orders of perturbation theory. However,

to illustrate the problem supwse wc use a scheme where(a) a’/n = cx/n( 1 – 10cM/n), then

the series (1) reads

1
~g, = 1 + 0.5(o’/7r) + 4,67( CY’/n)2+ 94,61 (~’/n)3 + . . . (2)

which now looks like a bady behaved series! This means that when dealing with large coef-

ficients some ca.ii must ‘betaken to express quantities in a scheme-invnrknt fashion. In this

example, incidentally, ( d)’1 * 140,29 correspmtd.ing to m “inappropriate” O/ defined at

an energy scale significantly greater fhart the low energy scale of g,.

Before moving onto QCD, i! is wonh mentioning one other example from QED and that is

[he decay of otihopositronium in[o three photons, The width for this process is given by(~)

(3)

lhcre are several points wmth noting aboul this; first is the appeamnce of a large cocffi -

~icnt in the leading order correction; this receives its dominant contribution from [he graph



shown in fig.1 and is large in any reasonable scheme. Note, however, that, because the t.rce-

gmph contribution is - a 6, this correction is rather sensitive to the scheme. Eq, (3) is one of

the few (and possibly only) cases where the theoretical predictions of QED are in serious dis-

agreement with experiment. In fact, there is a 5-standard deviation discrepancy w4ich could

be explained if the coefficient of the ( a/n)2 term were of odcr 300! Scheme dependence

has been evoked to explain this, but itcould be a situation where true large coefficients are

occurring. Notice, incidentally, the occurrence of the curious ~ocfficient ( n2 – 9); conceiv-

ably the fact that this almost vanishes (presumably accidentally) contributes to the sensitivity

of this process.

Perhaps the first example of a large coefficient occurring in pctiurbative QCD is in the decay

of the O‘+ heavy quark state q~ into two gluons(s). Typical gmphs arc shown in fig. 2. The

calculation yields

r(qB+2g)

l-fqB~27) ‘*( W1+’24(;)+”I
(4)

Bound SMreseffects have been completely ignored and the initial valence quarks and final

state gluons treated as if free. As in the mhopositronium case, the large coefficient (22.4) is

scheme-dependent since the tree-graph conrnbution is 0( ~~ ).

Ruling out a light higgs has been a frustratingly difficult enterprise mostly because of its very

weak coupling(g), The best limits come from rare K and B decays, the higgs being detected

via its decay into p+~– pairs. This, therefore, requires accurate knowledge of the branching

rittio into this mode which can Icad to serious uncertainties. An elegant way of avoiding this

problcm is to use the decay Y + h + q and to look for a single hard photon in which case, the

decay mode of the higgs is inclcvant( 10). At tree level, the decay procccds vitt the diagram

shown iri fig. 3. Ignoring bound state effects and treating the systcm as if it were positronium,

one obtains

5

In this ralio the crude bound state effects, which would be reflected by [he wave-functkm

at the origin in u non-relativistic loosely bound system, cancel. In such an approximation

mY ~ 2 nab. [n addition to inherently non-pcrturbmive bound stute cm-rcctio~isto [his formulu



Fig. 1

Dominant conuibution to the decay of athoposiuwium into three photons

‘<
‘<

+.,..,,..,.

Fig. 2

Typical graphs contributing to the decay of pamquarkonium

<

Fig. 3

kd.ing graph in the decay y ..> h + y



there are the usual QCD pm.ubative radiative corrections to the sub-process b~ ~ hq. A 7

calculation of these leads tof11)

(6)

where, for ~h < rnY ,0 = 13 again showing the appearance of a largti coefficient. Taken

at face value this formula would mle out (12)ahiggs in the range 200 MeV~ W,h~6GeV.

However the correction here reduces the tree graph result by N 80% making the calculation

suspect. When uncertainties about possible bound state corrections are folded in, one must

ccminly take this conclusion cum gram salis, especially since a consenative attitude is
mandated when dealing with the existence of the higgs ! Notice incidentally that unlike the

prwious formulae the expansion in eq. (6) begins with ( cM,)0 so that the result should be

scheme-invariant.

This process has dmady ken alluded to in the introduction. The total cross-section (R)

for e+e- annihilation into hadrons relative to that of p+p- pairs is di~tly related to the

absorptive pan of the polarization tensor defined by

%.(d = i/~~e*r(ol~[j.(~)ju(o)llo) (7)

= [q2g#”–qpq”lrl(q2) (8)

where jP( z) is the electromagnetic current operatcu: R = 12nIm ~. If p is an arbitrary

renormalization scale parameter then the perturbative expansion of R reads

R [q2/IA2,a,(P)]= (~Q:) fJm(u2/p2)(a,/n)n.(9)

In the ~ scheme with 5 flavors, the coefficients Itavc the following ‘i) values when qz =

IJl:

&=51 =l; ci2=l.41and53 =64.9. ( 10)

The last of these is truly remarkable. To get some idea of its implications, note that if it is

negleaed t.hcna comparison with data at @ = 34 GeV leads to a, = 0,169 corresponding

to A~CD % 610 A4eV. On the other hand it if is included then u, = 0.150 conesponding
to AQc~ w 314 MeV, a reduction of 50%. To make this even more dramatic, Fleischer et al

( ‘]) have made a Pad&approximant fit m the series. Though this should be mkcn CUMgram



safis it does illustrate just how serious things could become: they find ~4 % 104 leading 8

to a, % 0.114 and AQCD% 60.3Me V ~dG5 % 1.5 x 106 leading to a, N 0.086 and

AQCD% 6.3 MeV. Clearly, then, one needs to understand the natu.m of the series and its
implicit non-perturbative character before one can begin to confidently extract quantities like

a, and z Q? from the data. In a sense one can compam this situation with that which existed
in weak interactions prior to unification. At that time the Fermi theory gave an adequate (and

reasonably accurate) description of low energy weak interaction phenomenology in spite of

the fact that it was non-renormalizable so that eventually it would break down. Similarly,

here, one might argue that, because of asymptotic freedom, perturbation theory should give an

adequate estimate at truly infinite energies. However, at finite energies appropriate to present-

day experiment, there are potentially large corrections due to the divergent nature of the

series, even though the theory is renormalizable. Just as one had to wait for the development
of a renormalizable theo~ of the weak interactions in order to control and consistently define
the infinities in each term of the perturbarive expansion, so, from a conservative point of view,

one musF await a similar procedure for dealing with the complete sum of the series before

king confident that our predictions are consistently meaningful!.

III GENERAL PRINCIPLES, DEFINITIONS AND TECHNIQUES

Perturbation theory can be thought of as being generated by an expansion of the path integral

around local minima of the action [ S~, say, where 6S/6Ap l=.= = 0]. Symbolically, then,

H can be thought of as having the following representation:

where g is the usual gauge coupling (da s gz /4 n) and the dependence on p has been sup-

pressed. The series with m = O defines ordinary petiurbation theory as represented by the

usual sum of Feynman graphs. The multi-instmton sectors and so forth, which WEtopolog-

ically separated from ordinary perturbation theory, are mpresentcd by the m # O series, As

generated directly horn the path integral, the expansion (11) is very sick: each coefficient

Am. ( qz ) is divergent as is each series summed over n The firstof these problems is con-

ventionally dealt with via snme renormalization scheme (and, if necesswy, by some infrared

c- t-off) whereas the second disease is typically ignored, The challenge is to find a consistent

scheme to control the divergence implicit in the sums. To attack this problem, 1shall need to

review some general properties of series expansior.s with emphasis on asymptotic cxptinsicm.

However, before doing so 1 want to remind the reader of the constrtiints on n rendered by



renotma.lizability and causality. The point is that the latter dictates general analytic properties 9

as a function of q2 whereas the former tells us that q2 and g2 are no~ in fact, independent
variables. Thus, the general dependence on, and analytic structure, in g2 is, in some sense,

known.

Because j“ is a composite operator there is an additional divergence above the usual multi-
plicative ones needed to renormalize QCD that must be cancelled to render the theory finite,

This is the single q~ intermediate state which gives a logarithmically divergent contribution

to II even in free field theory. On the other hand jP, being a consenwd current, has no anoma-

lous dimension. The renormalization group equation resulting from the invariance of II to

changes in the scale p therefore reads (negl&ting quark masses)”

[%++ln[$’2(~)1=1[’2(p)](12)

The presence of 1 reflects the composite nature of ju. Now, the general solution to this

equation can be expressed as follows( 14):

‘($Jg2)=F[$e2K(’)1+~(’2)
where

F being an arbitrary function.

in perturbation theory

9(9) ~ -g3(tM +&2g2+ . ..)

leading to

(13)

(14)

(15)

( 16)

(17)



NOW, both R and D s ( q2d/t3q2) rl satisfy the homogeneous equation and so depend only 10

on the single variable z s ( q2 /pz ) e ‘K(g). Thus, for such qua.n!ities. q2 ~ 00 is equivalent

to gz + 0,+ his, of course, is just the asymptotic freedom connection, namely that the

asymptotic q2 behavior of R is derivable from its small g2 behavior and so, can presumably

be systematically calculated via perturbation theory.

Conversely, it is clear that the small q2 behavior is equivalent to g2 ~ O-. Thus, if
perturbation theory [i.e. eq. (9)] were convergent, so that D or R were analytic in g2 at

92 = O, then one would have proven a remarkable theorem (13, namely, that their infra-red

and ultra-violet behaviors had to be identical! Pm slightly differently one could state this as

saying that the difference between the lR and U-Vbehaviors reflects the lack of a.nalyticity at

92 = O. Indeed, if one knew the precise nature of the singularity at gz = O then one would

know the IR behavior of the theory! Thus the problem of the large coefficients in QCD is

presumably linked to the problem of its IR behavior.

It is well-known that causality implies that II lM an analytic function of q2 for complex q2

except for possible singularities along the positive real axis. This is normally expressed via

a dispersion relation. Now, asymptotic freedom dictates that for q2 + cm ,11 N In q2

thereby xeqttiring (at least) one subtraction”). This subtraction in the dispersion relation is,

in fact, intimately related to the extra subtraction needed to renormalize H and, consequently,

to the inhomogeneity in the renormalization group equation. Using this it is easy to w-ite a

dispersion representation for D:

D
92 *

() / ()

d=’d49Rtl+2
719
P

= 12 # ~ ~q’z -q*)* -J9 (18)

(19)

In writing the second line, the RG constraint that both D and R be functions of z only

[ i.e. R = 12 m2f( z)] have been explicidy inct~rporatcd.

Notice that no assumption about a miss gap has been made here. For this amplitude, the

appem.nce of a mass gap (beginning at 4 m: ) is related to the introduction of quark masses.

For the glueball channel, however, when a similar representation holds, it is generally ex-

pected that there exists a mass gap even in the massless quark Iimit( lb). ln such a case the

corresponding D will have a Taylor series expansion in q2:

D(q2/#2,g2) = ~(Ligwq*)” ( 20)
so



This expansion is the complement to the perturbation series where the expansion is in pow- 11

ers of gz with q2-depen&nt coefficients. Howevel, in contrast to that expansion which is

asymptotic at best, this expansion necessady has a fhlitc a.dius of convergence (given by

the square of the glucbrdl mass, or, in the case We have been considering, 4 m: if quark

masses am introduced).
Requiring chat D be a function of z only detmnines the full g2-depndence of the 4:

Uo
{21)

(22)

where & are numbers Mepenckm of q2, U* or g -IL in the second line, we have uses eq.

(17). The question chat must now k faced is how can this (exact) expression, which contains

explicit non-analytic pi-ces in g2 - indec~ essential singularities - ever be cast into the form

of a Penurbative expansion in g2, as in eq. (9), which ntively treats D as if it were analytic

in g2 at g2 = O ? h order to begin to answer this question we need to digress z little into

some propernes of series expansions.

IV DIGRESSION ON SERIES

Consider the follciwing series expansion

EXPANSIONS

( 23)

! first want to invert this IDobtain a formula fur the am in terms of j( z). The trick is to

make use of propefiies of the gamma-function( ‘7) r(s), nmely, that it has a string of simple

poles tit 8 = -n with residue ( -1 )“/n! T!lus, (23) cnn be expressed as a contour integral

f(x) - ~~r(8)d8)Z-’ ( 24)

where a( a) is the amdytic continuation of am such that U( –n) s an and C is the contour

shown in Ihe fig, 4, Now, if a( 8) has no singularities in the left-hand plane and the intcgrm.i



12

Fig. 4

COMPICXs-pkw showing singularities Of r (s) and
the contour C U- in cq. (24). C can be ddormd
to L and P MeUin trnnticmns profound to caAin aq.
(25)



is sufficicnd,v convergent, C can be replaced by a line L parallel to the imaginary axis. The 13

resulting rcp ‘escntation wiU be recognized as m inverse Mellin transform from which one

can read off the desired result:

1
a(8)=—

/
= dz z“-’ f(z)

r(9) o
( 25)

An alternative form for a(s) that is sometimes useful can be obtained by analytically contin-

uing the integrar,d into the complex z –plmv.:

~(a) =r(l -9)
/
+J. -z) ’-’f(z) ( 26)

The contour C wraps around the cut defined along the positive real axis necessary to define

z“-1 as a singl~-m.lued function. It can be opened up to pick up the singularities of ~( z).

For example, if these only occur on the negative real axis then (26) reads

/

-&
~(d ~r(l –a) —z’-’Im f( -z)

o 7i
( 27)

Suppose the series (23) were divergent; define a new series g(z) from it by introducing

coefficients b. such fhtit

( 28)

This new series can always be made convergent by choosing the b. to fall sufficiently fast

for large n Using the Mcllin uansform technique described in (A) above together wi~h its

convolution theorem leads to the following formula:

/

- du
f(z) - yu(u) m % (29)

o u

/

da z-’
where L)(z) ~ — — (30)

~2ni b(a)

i.e. I /b( a) is [he Mcllin trnnsfotm of f3( z). As bcfom 6( .!) is [he wmlykiccontinluttion of

bn such thtu b(.- r~) AIbw,



The idea of summability is then the following: choose the b. to make the series for g( x) 14

convergent; insert its sum into (29) which, if it exists, gives a well-defined repre~ntation for

~(z). The best-known version of this is due to Borclf~3: choose b. = 1/n! then B(s) =

l/r(l – S) leading to 13(z) = ( 1/z)e ‘l/’. This defines the Borel sum of j( z):

f(z) = ~
/

z o- du g(u)e-”js (31)

Other choices for the bmarc, of course, possible, however the Bolel technique is the one

that has received most attention. As an example of the Borel methd consider the series

generated by a. = (n! )2; this is clearly divergent. However, g(z) = Z( –z)’ can be

summed to give ( 1 + z)-’ and so

This is supposed to be the aue unique representation of ~( z). From this point of view the

original divergent series simply arose from our “illegal” expansion of the integral as a pwcr

series in z,

The q~estion arises as to when [his technique does, in fact, give a unique and consistent

representation of the function. There are, namrally, many impomnt theorems and treatises

dealing widl such questions; however, this is not the place :oreview them, Roughly speaking,

the method umrKs when all the integrals converge uniformly. of particular importance is the

absence of ~ingula.rities on the positive real u-axis. For example, if o. = ( - 1)m(n! ) 2 ‘hen

9(U) -(1 -2)-1 and the series is no longer Borel summable, ~pically this mcanf that

undetermined essential singularities such as e-ds Cmnot IX excluded from ~(Z)

Suppose that ~(z) has a power series expansion in some wedge of ana!yticity i)}(he complex
plane d < 7r/2. Consider

m when A’ -+ oo for z fixed indicating zem rndius of convergence, on the other hund

RN(z)/2~ ~ O for N fixed and z + O. his is Poincar4’s dcfit) ition of nn asymptotic



series, As shall be demonstrated

CN - cb~+’r(~+ O) wherca,

minimizes when

and thm

below, a general feature of quantum field theories is that 15

b, and c arc constants. It is easy to confl.rm that RN(z)

N= NOR l/bz–a ( 34)

RN.(Z) = c(2fibz) }e-’/k ( 35)

This is a remarkable result which demonstrates the character of asymptotic series for it shows

that RN(z) ~ O for z sufficiently small. Thus when N = No, the series exponentially

approaches the correct value of the function j(z) for sufficiently small z even though

it diverges! If further terms are added to the partial sum one is driven further from

the corr~ result. Thus, if one believes that in QED the appropnace xpansion parameter is

CY/Tand that the series is asymptotic in Poinca.r4’s sense then it is not until m/a terms that

one need be concerned! Furtherrnom one can approach within e-’’’” of the exact result!

V LARGE n-BEHAVIOR

As explained in the lnucxluction the main thrust of this paper is to gnin some possible in-

sight into the occurmtcc of large ‘ocfficients in the pctturbation expansion. The question of

summability discussed above, though intimately relate-d to this problcm, will 5C discus.scd

elsewhere. The rest of the paper is thcrefote devoted to the question of the large n bchaviour

of the coefficients am(q2/p2 ). We shall first review how this ctm be attacked using the “bare”

path integml representation, Unfortunately this leaves several questions unanswered, espe-

cially for gauge thcotics( ls). We therefore turn to the representation (19) which incorpcmtes

q2 -amdyticity and rcnormalizability and thcrcforc, implii itly, the complctc g2 -dcpcndcncc.

Funhermore, in contrast to the path integral it is a representation for the truly physicrd am-

plitude.

With a gcnertdization to the path integnd in mind, consider functions ~(z) which have the

following rcpresenuuion

( .36)

For example, if A( u) = U2 + u’ then



which is the “zero-dimensional” limit of a Euclidean ~’ field theory with coupling strength 16

z. Notice that if this is naively expanded in powers of z, one obtains

( 38)

which is clearly divergent. Lndeed it can be Boml-summed to reconstmct the original repre-

sentation (37). Inseting (36) into the coefficient generating formula, eq. (25), gives

( 39)

Thus in A(u) generates the coefficients. Let us suppose, again with our eye on field

theory, that A(u) - U2 when u A O, then by continuing u into the complex plane, it is

possible tore-express (39) in the form

( 40)

where the contour C wraps around the cut on the positive reed axis necessary to define in u.

This expression is ripe for exploitation by the methcul of steepest dCSCCnL~.saddle points

cccur when [in A(u)]’ E O i.e. A’(u) = O. Notice that, although AI(u) = O when

u -0, this is not so for [ In A(u)]’; thus, even though u = O is a saddle point of the original

representation of ~( z) and is the point about which perturbation theory is developed, it is not

a saddle point of the coefficient generating function, q. (40). ~pically [/n A(u)]” >0 at

thr saddle point (uo) and we find hat fm a = -~~ - -cm

0( n)=a JJ”(l+n)]2 [–A(uO) ]-’
m

(n+ 1) [27rA’’(uO)l}
(41)

provided .4( u.) <0 which is generally valid for polyrmminl A( u), II is straightforward to

check tluu for the example (37), this formula agrees with eq, (38), Eq. (4!) shows that the

effective expanshm parameter la actually not ~, but rather r/A( u.). Furthermore, note

Ihtit if A( UO) > 0 then, nn~vcly, a factor ( – l)” is induced in (41) which wtmld imply thti~

Ihc series is no longer Borcl summable. We shrill return to this situmion below



The extension of the above analysis is straightfonvardly genera.lizcable to a path integral 17
representation. The vacuum-vacuum ampiitudc for a scalar field theory with action functional

A[ #] is given by

w(g) = —
; /

D@-A[d/# (42)

where g is the coupling constant. This can bc expanded in the usual Fcynman graph pcmr-

bation series as a power expansion in g. The coefficients can bc determined, as above, using

Cq. (25):

r(l –9)r( *-~) ~wu
a(s) =

27ricos ma
e

I
D~e(+mA[#l (43)

Thus in A[ ~] acts as the effective action for determining the an. As before the rnvial

local minimum of A at # = O, though being the starting point for pcnurbation theory, dots

not conrnbuce to a(s). The saddle points (at 4 = #o, say), satisfy the classical equations of

motion and have an action given by

A[dd n – /
~X~: = –8n2/3 <O ( 44)

The functional intc~al can bc evaluated at the saddle point and an answer analogous to (4 1)

derived. Ca.rc must bc taken in prcqxriy accounting for mro-modes etc. with the result chat

am=nl~(nt 1)]2{-AJ#O]}-*~ (45)

Thus the expansion patameter is not ~ but rather ( 3 g/8 nz ),

in the literature this formula was originally &nvcd using cq, (27) for a(a) ( ‘B]. This

requires an immediate analytic continuation in g. Now for Re ~ < 0, eq. (42) diverges

indicating that singularities cxcur oniy in the ieft-ha.nd plane, To dctctmine the nature of

these singularities, the path integral itself needs to bc analytically continued in ~, One finds

a cut beginning at g = O extending along the ncgiitiveRe g axis, An evaluation of the

discontinui[) across this cut gives a result in agreement wilh cq. (45). Deriving the result

this way makes a connection wilh Dyson’s original argument since an imaginary part only

develops if there am other vacua [hut arc IKNsmb]c.

ln n[tcmpting m extend this mchniquc to non-abclian gnuge theorits such as QCD seri-

ous problems arise. First, there is the classic problem of maintaining gauge invariance for

physical quantities, Secondly, these theories lead m non-triviul snddle-points with positive

uction, As Hlrcudy emphasiud this precludes a st.mightforward npplicuti(m of summtibili(y.

On the other hand [hcsc additiontd minima of the action ([ypict~lly rcfcmcd to as insmnmns



and the like) have a topological characterisitc associated with them. In that sense they give 18

riseto a more general expansion beyond ordinary perturbation theory in tcnns of to@ogical

sectors, as represented in eq. (11). The problem is then to determine how much, if any, of the

insm.nton-iike contributions feed back to what is usually thought of as ordinary pcrturbabion

theoxy. Because of problems such as these it has lxen difficult to apply these techniques

directly to the path integral representation.

The representation, cq. (19), incorporates both causality and rwtormalizability and, as such,

explicitly contains information that is not directly encoded in the path integral. In this sense it

is potentially more useful for our purposes since it contains an essential feature of perturbation

theory, absent in the path integral, namely renormalizability. In this section I shall therefore

attempt to exploit (19) to determine the large n behavior of the coefficients.

Let us first express the perturbative expansion of D in the form

( 46)

The coefficients that we are actually interested in are those Occurnng in the expansion of R

m in eq. (9). ?’hesc can bc derived from the Am via the formula:

[
‘.”(-’”2)*’&*,-+$ +#+””’1 ( 47)

For large n only the first term need be kept since we anticipate that /. * (n! ):. In order to

avoid appu.rent essential singularities at the origin, arising from the renormalization group, it
is convenient to trwtsform to the variable k ~ 1/g2. Using eqs. (26) and (19) the coefficients
in (46) cun be obtained from

with K given byeq, (17), We are interested in the bchaviorof thisexprcssion whens -+ –oo,

As before, !his can be estimated using a steepest descents technique. The smuc!um of the

cornplcx k-plane is evidently qui[c complic~tcd as can he seen from fig, 5, T%crc am [hrcc

distinct types of singulwity: (i) the fnmiliar CUIon the positive reul uxis ncccsswy 10define

( --k) “’-’; (ii) an infinite scqucncc of poles, (at k = k~, say) urising from the v:lnishing of
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Complex k-phnc sbwing the contour C used in q.
(48) tqcther with the singularity wmcturc



the denominator kN/bl + ,.. . ~. w in (q2z/p2) A 2nNi(N = O , 1.. .) and finally (iii)

cuts necessary to define potential logtithms in e2’; (e.g. kerning only the first two terms in

(16)or (17), there is a cut at k = –b2/61 as shown in fig. 5).
As one might guess, this complex s~cture gives rise to a plethore. of saddle points in

the k-plane making an accurate estimate of (47) quire subtle. A more detailed discussion of

this will be given in a later papev however, roughly speaking, these saddle points fall into

three categories that comespond to the three categories of sir@arity mentioned above. These

occur at(a)k x bl(a+ 1) + bz/bl + Cl(e-’) (b)2~ w ln(~2z/~2) t 2miN+ 0(1/s);

(c) P(9)/g3 = o. Let us discuss each of these briefly. The first is the saddle point that

we arc most interested in, for it dominates the large a behavior. Notice that it corresponds

to gz -+ O‘, as anticipated earlier. The second reflecl the poles at k = kM in (ii) above.

I?tey generate the typical (In ~2/~2 )‘ + . . . dependence of the coefficients familiar from

asymptotic freedom. Since we want to compare with ref. 1 where 9Z = U2 these saddle

points am presumably not of interest here. Finally, there can be saddle points arising from

other possible fixed points of P( g). Notice that the usual “trivial” fixed point at g2 = O (about
which pem.ubation theory is actually generated) is excluded from this. This is analogous to

the situation we encountered alwe when &alirtg with ~hepath integral formulation where

the trivial saddle point at A = O does not explicitly contribute to the estimate. On the other

hand, the “pseudo” fixed point at k = –~ /bl generated by keeping only the first two terms,

must be included. l-nQCD the signs of b2 and bl are such that this occurs for Re k <0 (or

Re g2 < O). Had the sign of b2/bl beat different as in ~’ theory (but not in QED!) then

this cut migrates to the positive real axis overlapping the ( -k)-’-’ cut. In such a case it is

not obvious that the coefficients CM be determined and it is reasonable to speculate that this

is related to the well-known claim chat ~’ is in fact a trivial theory.

Returning to eqs, (47) and (48) we can estimate the large n--bdmvior of h. by keeping

only the single saddle- point at k N hl (u + 1). In that case we find, assuming Isl > k/bl,

r(n)

d
( 49)

(fo)

m -@l –2/3N,)n (51)

indicating rapid growth of the coefficients with n. (Ii: these expressions e is the base of

natural logarithms, not to be confused with the electronic charge!) Perhaps the most striki-

ng aspect of this result is that the efktive expansion parameter is not a/n but rather

Cm,fj s 4 nz ebl cM/n. Repeating the analysis of Section IV C for the case here we find ‘hat the

remainder & minimizes when n z 1 + cu~~,+ ( 2 + a cjj )-1 x 4 5 [tAing G itsrlf to be

20



w 0.15 ]. This is remarkable for it says that an accurate result can be obtainet’ by keeping

only these first few (4-5) terms. Indeed, an estimate of the emr introduced by this process

gives a contribution of only x 10 ‘3! This is all vety encouraging; however, how accurately

can we trust these estimates if n is so small? To get some idea, if we put n=2 in cq. (50) then

iis /tiz - 11. This is indeed a relatively large number, although not big enough to account
for the result of ref. 1. Furthermore, our asymptotic formula requires that succeeding tenrts

alternate in sign, a characteristic which does not show up in 1. On the other hard the sign

of 63 agrees with our prediction, so the “problem” resides in &. Onc certainly would not

expect our analysis to be valid fa this coefficient so there is no serious contradiction. The

problem is, of course, that even though corrections to (49) coming from expanding around ths

saddle point can be expcted to be quite small, there are many other sub-asymptotic saddle

points whose contribution may well be comparable to the leading contribution expressed i

eq. (49). A more accumte malysis is therefore required tc actually establish a firm estimate

of 63, for example, and to confirm the calculated result. Such an enteipke is currently being

undertaken. It is woti noting that cq. (49) gives tis F- 12, a factor 2 n smaller than the

calculated number of ref. 1.

It should also be pointed out that these leading estimates are both gauge and schcme-

invariant, as one might ex~ct. Ultimately one would like to be able to cortidently extract

a, horn the data (if it is sufficiently accurate!) which means that wc need to lmow eiy~er

where to stop the series or how to resum it. Our analysis indicates that stopping at n m 4 is

sufficient. In that case one could simply add the estimate to the already calculated numbers.

Similarly one can resum the series beyond these terms using a variant of the Borel technique

cuscussed in the previous Section. In any case it is clear that some consistent procedure or

algorithm must eventually be invoked to control the divergence problem and the consequent

large coefficients. In this talk I have attempted to show how this problem c~, be solved in

principle and suggested som~ practical possibilities. A laier paper will present details and

pursue the solution,
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